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Abstract. Vision Graph Neural Networks (ViG) have demonstrated supe-
rior performance in computer vision tasks compared to Vision Transformers
(ViTs) and Convolutional Neural Networks (CNNs). ViG’s adaptability to
varying spatial relationships and irregular structures within images, coupled
with its dynamic information aggregation, positions it as a robust solution for
understanding of both fine-grained details and broader scene context. How-
ever, challenges such as vanishing gradient during training and the methods
of defining edges need attention. In this work, we propose improvements
to ViG, focusing on mitigating vanishing gradient issues, introducing novel
edge generation strategies, and incorporating trainable edge weights.
Keywords: vision graph meural networks, edge generation, residual con-
nections, adaptive adjacency matrix, graph convolution

1. Introduction

Vision Graph Neural Networks [1] (ViG) emerge as powerful contenders for
computer vision tasks, surpassing Vision Transformers [2] (ViTs) and Convolu-
tional Neural Networks (CNNs) in flexible processing and seamless aggregation
of global context. Graph Neural Networks (GNNs), designed to operate on graph-
structured data, exhibit a remarkable ability to adapt to varying spatial relation-
ships and irregular structures within images. Their flexibility enables the dynamic
aggregation of information across nodes, facilitating effective propagation of con-
text throughout the graph. Unlike the fixed receptive fields of CNNs, GNNs nat-
urally handle complex structures of images. Comapring to ViT, they need not to
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Figure 1: Comparison of input image representation: (a) - when using CNNs, we
are constrained by the grid of pixels in the image, (b) - with the ViT architecture all
patches are arranged in a sequence, which is further processed by transformer en-
coder layers, (c) - ViG allows for arbitrary dependencies to be set between patches.

considered a fully conntected graph and offer a variety of different graph convolu-
tional operators.

The process of graph creation in ViG starts with dividing image into N patches
(Figure 1). It is done using a simple CNN block, which transforms each patch into
a D dimensional feature vector in the embedding space. All these features are then
assigned respectively to a set of unordered nodes V . The next step is the addition of
edges E between nodes. Authors of ViG paper generate edges between K nearest
neighbours of nodes using the distance calculated in node embedding space. After
computing the edges, the graph G = (V, E) is constructed and graph operators
are applied. Their goal is to update node embeddings propagating messages along
edges from neighboring nodes. The final embeddings are aggregated and passed to
a classifier block. Such a model allows for an end-to-end training (botch classical
and graph convolutional layers are trained together).

Working with ViGs we have encountered vanishing gradient problem [3]. Back-
propagating through these networks causes oversmoothing, eventually leading to
features of graph vertices converging to the same value. Moreover, it seems not to
be natural to create edges basing on node embeddings. This solution is expensive
computationally, as it requires computation of all distances between patches. Ad-
ditionally, it links only patches with similar embeddings, which means that patches
of one object that are visually different will not be connected. Intuitively, however,
information about node properties and graph structure should be rather a separate
source of knowledge in considered image analysis tasks. In this work, we aim to
improve mentioned above ViGs problems.
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Figure 2: Static edge creation: (a) - neighbour edges, (b) - complete edges.

2. Materials and methods

We demonstrate our improvements in effectiveness of ViG model on image
classification task. To ensure the comparability of the experiments, in all of them
we use similar architecture (Figures 3 and 4): the same CNN block to convert the
image into patches, the same number of graph convolutions, global pooling and
linear classifier. To compare different architectures we have used the Imagenette1

dataset, featuring a subset of 10 easily distinguishable classes from ImageNet, con-
taining: tenches, English springers, cassette players, chain saws, churches, French
horns, garbage trucks, gas pumps, golf balls, and parachutes. The proposed novel-
ties in ViG’s architecture include: alternative static edge creation strategies, resid-
ual connections and trainable edge weights.

In contrast to the computationally demanding approach of generating edges
based on the K nearest neighbors [1], we propose alternative strategies involving
neighbor and complete versions, which provide compelling advantages in the con-
text of graph construction for vision tasks (Figure 2). Rather than fixing on a spe-
cific number of neighbors basing on proximity, the generation of neighbor edges
offers a more stable solution. Nodes establish connections based on their inherent
spatial relationships. Moreover, although it is more expensive computationally,
the incorporation of complete edges augments the graph with a global perspective
allowing nodes to be linked. This strategy captures long-range dependencies ad-
dressing the limitation of the traditional approach, which tends to focus on local
relationships. This methods is especially useful for layers using attention, because
it allows to assign the weights for each edges and focus only on most significant
connections.

1https://github.com/fastai/imagenette

https://github.com/fastai/imagenette
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Figure 3: ViG architecture with residual connections.

One of the methods of solving vanishing gradient problem in classical CNNs
was the usage of residual connections. It enabled also the creation of deeper archi-
tectures. Inspired by this success residual connections were added also in GNNs
([3]). Although, we are not building a deep architecture, in our work we have also
used them with graph convolutional layers, which is depicted in Figure 3. This
modification of ViG model not only solved the training problems, but it improved
model performance as well.

Specification of edges E in a graph G is equivalent with building a graph ad-
jacency matrix A. In this matrix 0 represents no connection between nodes and 1
represents an existing edge. Our next improvement of ViG’s architecture assumes
that adjacency matrix can be trainable. Its elements can have any value from inter-
val [0, 1] and thus can be treated as edge weights. To achieve that we incorporate
an additional CNN block followed by element-wise sigmoid function responsible
for dynamic generation of that adjacency matrix. This architecture is presented in
Figure 4. To avoid situations where all the elements of A are equal to 0 or 1, we
have modified the loss function adding to standard cross-entropy loss a regulariza-
tion term. This term was equal to −λ · σ(A) where σ denotes a standard deviation
and λ is a regularization coefficient set to 0.25 experimentally. The trained, in this
way, edge weights are used by modified graph convolutional layers - every mes-
sage sent through an edge is multiplied by corresponding weight. Thanks to that
we dynamically (depending on the input image) control the influence of different
nodes (image patches) on each other.

3. Experiments and results

All our experiments were conducted using three different graph convolutional
layers: GraphSAGE (SAmple and aggreGatE) ([4]), Graph Attention Networks
(GAT) ([5]) and Graph Transformer ([6]), each model consisted of two GNN lay-
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Figure 4: ViG architecture with trainable edge weights.

Table 1: Results of experiments (C - complete edges, N - neighbor edges, R -
residuals, TE - trainable edges).

Model Accuracy Model Accuracy
Ours SAGE C-R-TE 0.871 ± 0.003 Ours Trans C 0.848 ± 0.006
Ours Trans C-R-TE 0.867 ± 0.006 Ours GAT N 0.845 ± 0.013
Ours GAT N-R 0.866 ± 0.008 Ours GAT C 0.845 ± 0.009
Ours GAT C-R 0.865 ± 0.009 ViG 0.840 ± 0.004
Ours GAT C-R-TE 0.863 ± 0.005 CNN 0.832 ± 0.021
Ours SAGE C-R 0.860 ± 0.004 Ours Trans N 0.825 ± 0.017
Ours SAGE N-R 0.857 ± 0.012 Ours SAGE N 0.825 ± 0.007
Ours Trans C-R 0.856 ± 0.003 Ours SAGE C 0.822 ± 0.009
Ours Trans N-R 0.852 ± 0.011 ViT 0.746 ± 0.005

ers. ViG and ViT models were reproduced as in the original publications. CNN
model consisted of two classic convolutional layers instead of GNN layers. All re-
sults are the average of the three trials. Moreover, each group of trials was initial-
ized with the same set of seeds. Every experiment was trained for a maximum of
100 epochs with early stopping on validation accuracy with patience of 20 epochs.
Then, the epoch with the best validation accuracy was used for testing. As Ima-
genette only contains a train and validation dataset, the train dataset of Imagenette
was split with fixed seed into train (8500 samples) and validation (969 samples)
datasets, and the original validation dataset was used as the test (3925 samples)
dataset.

The results presented in Table 1 reveal several notable findings. Firstly, our
proposed modifications to the ViG model, particularly those incorporating com-
plete trainable edges (C-R-TE), have led to significant improvements in accu-
racy compared to traditional convolutional neural networks (CNN) and the Vi-
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sion Transformer (ViT) on the Imagenette dataset. This suggests that leveraging
graph-based structures and integrating them into convolutional architectures can
effectively enhance performance in image classification tasks. Furthermore, the
performance of different graph convolutional layers varied, but all the layers indi-
cated the efficacy of this approach in capturing global graph structures for image
feature extraction. On the contrary, the ViT model exhibited comparatively lower
accuracy on the Imagenette dataset. We hypothesize that this inferior performance
may be attributed to the model’s reliance on self-attention mechanisms, which
may struggle to effectively capture spatial information in smaller datasets like Im-
agenette. Future investigations on larger datasets will be essential to validate this
hypothesis and gain deeper insights into the effectiveness and robustness of differ-
ent model architectures. In summary, our experiments not only validate the effi-
cacy of graph-based models, particularly those incorporating complete learnable
edges, but also highlight the importance of structural information in capturing re-
lationships for image classification tasks. These findings provide valuable insights
for the development of more advanced and effective models in computer vision.

4. Summary

Presented results demonstrate the efficacy of proposed modifications to the
ViG model, surpassing both traditional CNN and ViT in accuracy on the Ima-
genette dataset. Graph-based models, particularly those incorporating complete
learnable edges, exhibit superior performance, highlighting their potential in im-
age classification tasks. Furthermore, we hypothesize that the inferior performance
of the ViT model may be attributed to the small size of the Imagenette dataset. In
future investigations, we will validate all methods on larger datasets to gain deeper
insights into their effectiveness and robustness.
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